Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Journal of Experimental Hematology ; (6): 154-161, 2023.
Article in Chinese | WPRIM | ID: wpr-971118

ABSTRACT

OBJECTIVE@#To investigate the effect of adipocytes in the bone marrow microenvironment of patients with multiple myeloma (MM) on the pathogenesis of MM.@*METHODS@#Bone marrow adipocytes (BMA) in bone marrow smears of health donors (HD) and newly diagnosed MM (ND-MM) patients were evaluated with oil red O staining. The mesenchymal stem cells (MSC) from HD and ND-MM patients were isolated, and in vitro co-culture assay was used to explore the effects of MM cells on the adipogenic differentiation of MSC and the role of BMA in the survival and drug resistance of MM cells. The expression of adipogenic/osteogenic differentiation-related genes PPAR-γ, DLK1, DGAT1, FABP4, FASN and ALP both in MSC and MSC-derived adipocytes was determined with real-time quantitative PCR. The Western blot was employed to detect the expression levels of IL-6, IL-10, SDF-1α, TNF-α and IGF-1 in the supernatant with or without PPAR-γ inhibitor.@*RESULTS@#The results of oil red O staining of bone marrow smears showed that BMA increased significantly in patients of ND-MM compared with the normal control group, and the BMA content was related to the disease status. The content of BMA decreased in the patients with effective chemotherapy. MM cells up-regulated the expression of MSC adipogenic differentiation-related genes PPAR-γ, DLK1, DGAT1, FABP4 and FASN, but the expression of osteogenic differentiation-related gene ALP was significantly down-regulated. This means that the direct consequence of the interaction between MM cells and MSC in the bone marrow microenvironment is to promote the differentiation of MSC into adipocytes at the expense of osteoblasts, and the cytokines detected in supernatant changed. PPAR-γ inhibitor G3335 could partially reverse the release of cytokines by BMA. Those results confirmed that BMA regulated the release of cytokines via PPAR-γ signal, and PPAR-γ inhibitor G3335 could distort PPAR-γ mediated BMA maturation and cytokines release. The increased BMA and related cytokines effectively promoted the proliferation, migration and drug resistance of MM cells.@*CONCLUSION@#The BMA and its associated cytokines are the promoting factors in the survival, proliferation and migration of MM cells. BMA can protect MM cells from drug-induced apoptosis and plays an important role in MM treatment failure and disease progression.


Subject(s)
Humans , Osteogenesis/genetics , Bone Marrow/metabolism , Multiple Myeloma/metabolism , Drug Resistance, Neoplasm , Peroxisome Proliferator-Activated Receptors/pharmacology , Cell Differentiation , Adipogenesis , Cytokines/metabolism , Adipocytes/metabolism , Bone Marrow Cells/metabolism , Cells, Cultured , PPAR gamma/pharmacology , Tumor Microenvironment
2.
Osteoporosis and Sarcopenia ; : 82-84, 2019.
Article in English | WPRIM | ID: wpr-760736

ABSTRACT

OBJECTIVES: The objective of the study was to determine whether postburn reduction of bone formation occurred earlier than 2–3 weeks after burn injury and whether that reduction was inversely related to marrow adiposity. METHODS: Using a rat model of burn injury with sacrifice at 3 days postburn, we measured serum osteocalcin, a biomarker of bone formation, as well as a regulator of glucose metabolism, and counted tibial marrow adipocytes. RESULTS: Serum osteocalcin was reduced as early as 3 days postburn, coinciding with a trend toward decline in marrow adipocyte number rather than demonstrating an inverse relationship with adipocyte count. CONCLUSIONS: Factors that may be responsible for the dissociation include lack of circulating sclerostin, previously reported, increased energy demands following burn injury, increased sympathetic tone and perhaps oxidative stress. The relationship between bone formation and marrow adiposity is complex and subject to a variety of influences.


Subject(s)
Animals , Child , Humans , Rats , Adipocytes , Adiposity , Bone Marrow , Burns , Glucose , Metabolism , Models, Animal , Osteocalcin , Osteogenesis , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL